Heterogeneous Ubiquitous Systems in R and Hausdorff Dimension

نویسنده

  • JULIEN BARRAL
چکیده

Let {xn}n∈N be a sequence of [0, 1]d, {λn}n∈N a sequence of positive real numbers converging to 0, and δ > 1. The classical ubiquity results are concerned with the computation of the Hausdorff dimension of limsup-sets of the form S(δ) = T N∈N S n≥N B(xn, λ δ n). Let μ be a positive Borel measure on [0, 1]d, ρ ∈ (0, 1] and α > 0. Consider the finer limsup-set

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Historic set carries full hausdorff dimension

‎We prove that the historic set for ratio‎ ‎of Birkhoff average is either empty or full of Hausdorff dimension in a class of one dimensional‎ ‎non-uniformly hyperbolic dynamical systems.

متن کامل

Ubiquitous Systems and Metric Number Theory

We investigate the size and large intersection properties of Et = {x ∈ R d | x − k − x i < r i t for infinitely many (i, k) ∈ I µ,α × Z d }, where d ∈ N, t ≥ 1, I is a denumerable set, (x i , r i) i∈I is a family in [0, 1] d × (0, ∞) and I µ,α denotes the set of all i ∈ I such that the µ-mass of the ball with center x i and radius r i behaves as r i α for a given Borel measure µ and a given α >...

متن کامل

Diophantine approximation on rational quadrics

We compute the Hausdorff dimension of sets of very well approximable vectors on rational quadrics. We use ubiquitous systems and the geometry of locally symmetric spaces. As a byproduct we obtain the Hausdorff dimension of the set of rays with a fixed maximal singular direction, which move away into one end of a locally symmetric space at linear depth, infinitely many times.

متن کامل

ITERATED FUNCTION SYSTEMS IN MIXED EUCLIDEAN AND p-ADIC SPACES

We investigate graph-directed iterated function systems in mixed Euclidean and p-adic spaces. Hausdorff measure and Hausdorff dimension in such spaces are defined, and an upper bound for the Hausdorff dimension is obtained. The relation between the Haar measure and the Hausdorff measure is clarified. Finally, we discus an example in R×Q2 and calculate upper and lower bounds for its Hausdorff di...

متن کامل

Real Analyticity of Hausdorff Dimension for Higher Dimensional Hyperbolic Graph Directed Markov Systems

In this paper we prove that the Hausdorff dimension function of the limit sets of strongly regular, hyperbolic, conformal graph directed Markov systems living in higher dimensional Euclidean spaces R, d ≥ 3, and with an underlying finitely irreducible incidence matrix is real-analytic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006